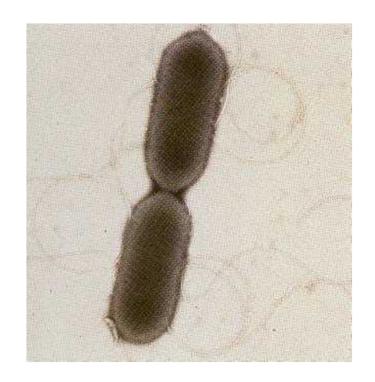
MRA basic awareness course


Topic 3 - Lecture 3

Microbiological Risk Assessment: Example - The FAO/WHO *Listeria monocytogenes* risk assessment

Listeria monocytogenes **Background information**

- May cause listeriosis when present in high numbers in food
- Food-borne can grow at chill temperatures
- Ubiquitous

Listeriosis

- Relatively rare, but serious disease
- High-risk groups include pregnant women, newborn babies, immunocompromised
- Incidence is 0.3-10 cases per million persons in Europe, USA, Australia
- "High case-fatality" rate that largely affects specific higher-risk segments of the population

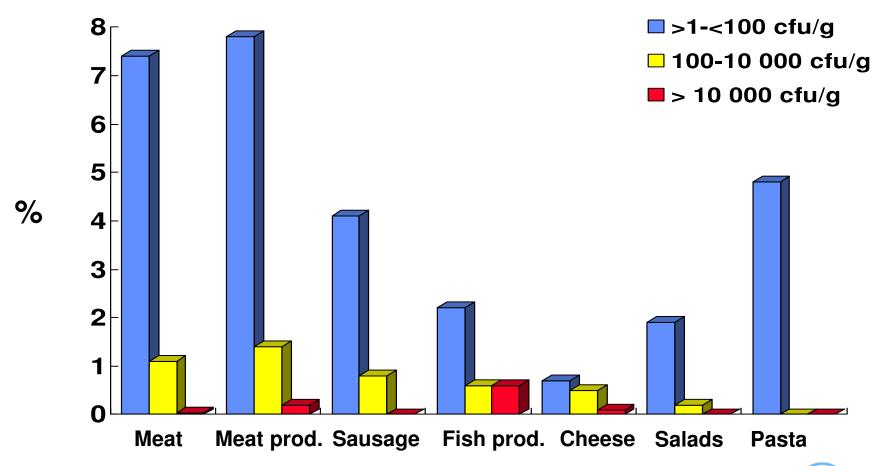
Sources of food-borne listeriosis

Typically ready-to-eat (RTE) foods with a long shelf-life e.g.:

- Soft cheese
- Meat products
- Smoked fish
- Deli salad

Product contamination

		Positive for <i>L. monocytogenes</i>		
Product	Total	Number	%	
Soft cheeses (white)	2 931	5	0.17	
Blue cheese	1 623	23	1.42	
Other soft cheeses	1 347	14	1.04	
Packed salads	2 966	22	0.74	
Meat, luncheon	9 199	82	0.89	
Deli salads	8 549	202	2.36	
Fish salads	2 446	115	4.70	
Smoked fish	2 644	114	4.31	
Total	31 705	577	1.82	


Gombas et al. 2003. JFP, 66: 559-569

L.m. in German food (1990s)

L. monocytogenes regulatory policies

- "Zero tolerance" (i.e. < 1/25 g)
- < 100 L.m./g food (at the moment of</p> consumption)
- Guidelines on the Application of General Principles of Food Hygiene to the Control of Listeria monocytogenes in Ready-to-Eat Foods

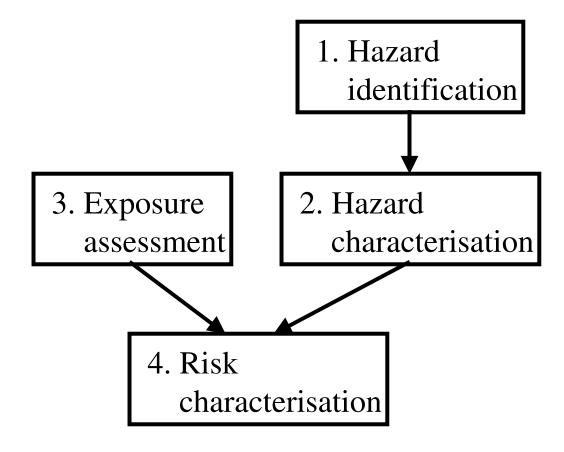
Codex guidelines for *L. monocytogenes* in RTE foods

Design sub-categories

- Foods for which specific *L. monocytogenes* micro. criteria are not relevant:
 - e.g. products that received a sufficient L. monocytogenes kill step, are packed avoiding recontamination, and are single use (or ensure no growth or die-off when re-contaminated after opening)
- Foods for which specific *L. monocytogenes* criteria are relevant: B.
 - ready-to-eat foods in which growth of *L. monocytogenes* will not occur, and
 - ready-to-eat foods in which growth of *L. monocytogenes* can occur.

RTE foods in which growth of *L. monocytogenes* can occur

- Design criterion "growth" limits innovation for products for which growth can be controlled to a safe level.
- It is likely that a safe level (100 cfu/g) can consistently be met by a suite of control measures and their proper implementation:
 - Selection of raw materials (H₀ low, prevalence low)
 - Inactivation / Listericidal action
 - Adequate control of growth with intrinsic factors (formulation) parameters and extrinsic factors
 - Adequate GHP + HACCP system operationally


Examples of product category rules / performance standards

- Dressings: design requires rapid die off.
- Margarines: design requires "no-growth" & max. presence (micro. criteria / spec levels).
- Ice-cream: design required "no-growth" and max. presence (micro. criteria / spec levels).
- Performance standards for *L. monocytogenes* inactivation to safe/acceptable levels (i.e. 6 logs reduction):
 - 70°C for 2 mins
 - 75°C instantaneous (current commonplace approach on reheat)
 - Equivalent reduction based on D/z

Slide 10 SEAC

Steps in Risk Assessment

MRA basic awareness course

Topic 3 - Lecture 3

Microbiological Risk Assessment: Example - The FAO/WHO *Listeria monocytogenes* risk assessment

MRA basic awareness course

Topic 3 - Lecture 3

Microbiological Risk Assessment: Example - The FAO/WHO *Listeria monocytogenes* risk assessment

Purpose of lecture

- Introduce the reasons for the FAO/WHO
 Listeria monocytogenes risk assessment
- Explain how the MRA was performed
- Show some of the outcomes
- Present the answers given to the questions formulated by the CCFH

Need for risk assessment

CCFH decided to commission an MRA...

to evaluate different

microbiological criteria

and control measures

CCFH formulated three questions...

to be addressed by the risk assessors

L.m. MRA commissioning (1)

Question 1

Estimate the risk of serious illness from L.m. in food when

the numbers range from <u>absence in 25 g</u> to <u>1000 cfu/g or ml</u>, or

when <u>numbers do not exceed specified limits</u> at the point of consumption

CAC, 2000

L.m. MRA commissioning (2)

Question 2

Estimate the risk of serious illness for consumers in different population groups

(elderly, infants, pregnant woman and immunocompromised patients) relative to the general population

CAC, 2000

L.m. MRA commissioning (3)

Question 3

Estimate the risk of serious illness from L.m. in foods

- that support its growth and
- in foods that do not support its growth

under specific storage and shelf-life conditions

CAC, 2000

FAO/WHO MRA initiative

FAO and WHO

- Called upon various experts in the field of food microbiology, epidemiology, food technology and microbiological risk assessment
- Launched a worldwide call for data pertinent to the questions to be addressed

Scope of the MRA

Only ready-to-eat (RTE) foods were to be considered The following foods were selected for the assessment:

- Pasteurized milk
- Ice-cream
- Fermented meat
- Cold smoked fish

From retail level to consumption

Data

- The call for data was partially successful
- Most data were from industrialized countries
- Risk assessment models and data from the USA were particularly useful

The Risk Assessment

Hazard Identification

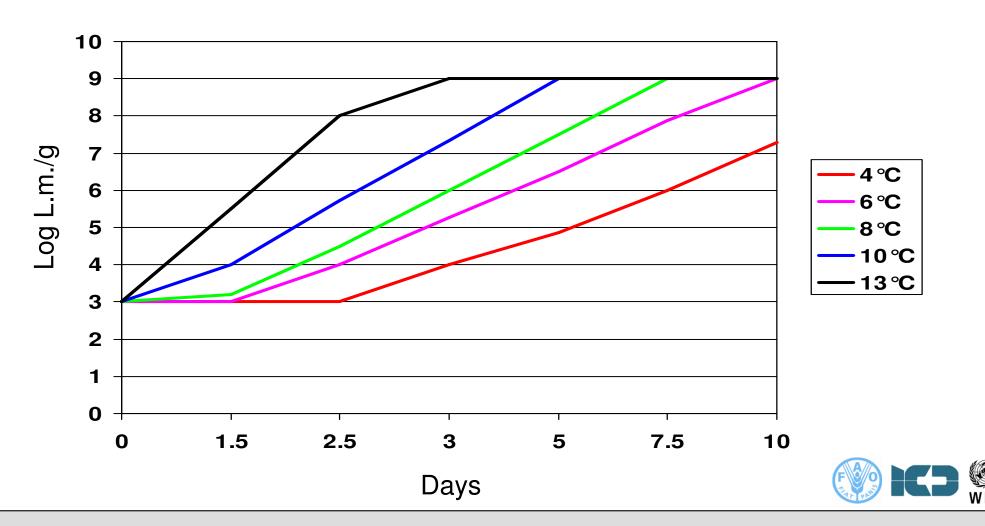
Focus on *Listeria monocytogenes* in ready-to-eat foods

Hazard identification

Description of the hazard

Growth limits for L.m.	Minimum	Optimum	Maximum
Temperature °C	-0.4	37	45
рН	4.4	7.0	9.4
Water activity	0.92	-	-

ICMSF, 1996


Topic 3 - Lecture 3 - Microbiological Risk Assessment:

Example - The FAO/WHO Listeria monocytogenes risk assessment

Hazard identification

Description of the hazard: effect of temp. on growth

Hazard identification

Persistence in factory environments

Food	Persistence	Country	Implicated in illness?
Cheese	4 years	Switzerland	Yes
Cheese, blue-veined	7 years	Sweden	No
Ice-cream	7 years	Finland	No
Smoked mussels	3 years	New Zealand	Yes
Cold smoked salmon	4 years	Denmark	No
Trout, gravad/smoked	11 months	Sweden	Yes (gravad)
Smoked trout, gravad salmon	> 4 years	Sweden	Possibly
Pâté	2 years	UK	Yes
Jellied pork tongue and rillets	8 years	France	Yes
Cooked poultry	1 year	Ireland	No
Cooked poultry	12 years	USA	Yes

Severity

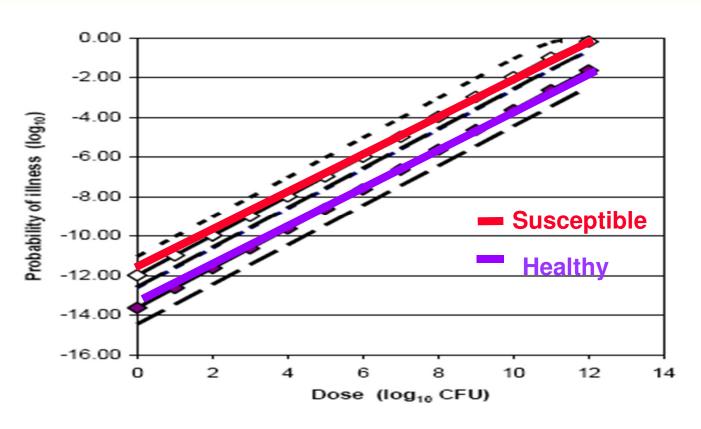
- The young, old, diseased and immunocompromised and pregnant women are more susceptible
- Invasive forms of listeriosis, such as septicaemia, meningitis, miscarriage and death, were chosen as the "end-points" in this MRA
- Main vehicles of food-borne listeriosis have been shown in previous slides

Dose response relationship

- The response to exposure is highly variable
- Some of the factors involved are:
 - The virulence of the strain
 - The susceptibility of the host
 - The food matrix
 - The number of L.m. ingested

Dose response models

- Various models exist, most of which assume that one cell can cause an infection
- An exponential model was chosen
- With this model the probability of infection is expressed with a parameter called the "r-value"
- Epidemiological and exposure data were used to estimate the "r-value"


"r-values" used

Used for question	Population	Median	5% percentile	95% percentile
Q1 (levels)	Susceptible	5.8 x 10-12		
Q2 (consumers)	Healthy	5.3 x 10-14		
Q3 and the 4 product	Susceptible	1.0 x 10-12	2.5 x 10-13	9.3 x 10-12
examples	Healthy	2.4 x 10-14	3.5 x 10-15	2.7 x 10-13

Dose response relationship

Exposure Assessment

Exposure assessment

Exposure assessment

- Questions did not need a "farm to fork" approach
- Changes in frequency and extent of contamination in the selected products were studied and modelled between retail and consumption
- Consumption patterns (size and number of servings) were estimated
- "What if" scenarios were considered for milk and smoked salmon

Exposure assessment

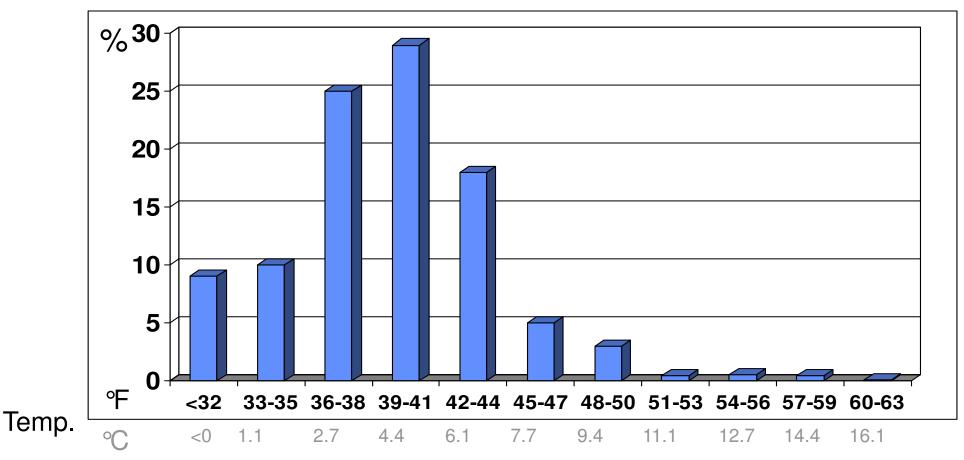
Characteristics of the products

- Milk: pasteurized, low L.m. contamination, supports growth, high consumption
- ce-cream: as for milk, but does not support growth
- Fermented meat: frequently contaminated, no "killing step" during production, no growth (even some decrease), low consumption
- Cold smoked fish: as for fermented meat, but supports growth

Exposure assessment

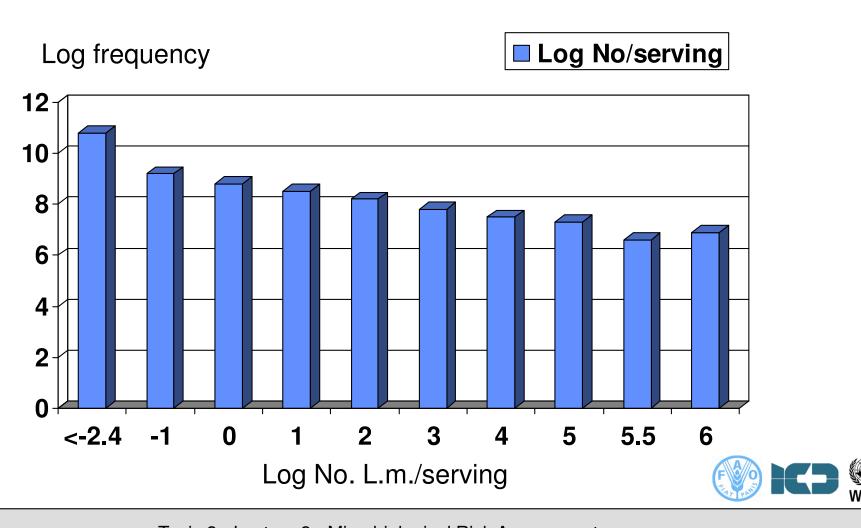
Inputs to exposure assessment

- Prevalence and concentration characteristics at retail
- Product characteristics
- Product storage characteristics and growth characteristics of *Listeria* under such conditions
- Consumption characteristics
- Proportion consumed by more susceptible population groups



Exposure assessment

Inputs: Household refrigerator temps (USA)



Exposure assessment

Inputs: Distribution of L.m. in servings

Risk Characterization

Risk characterization

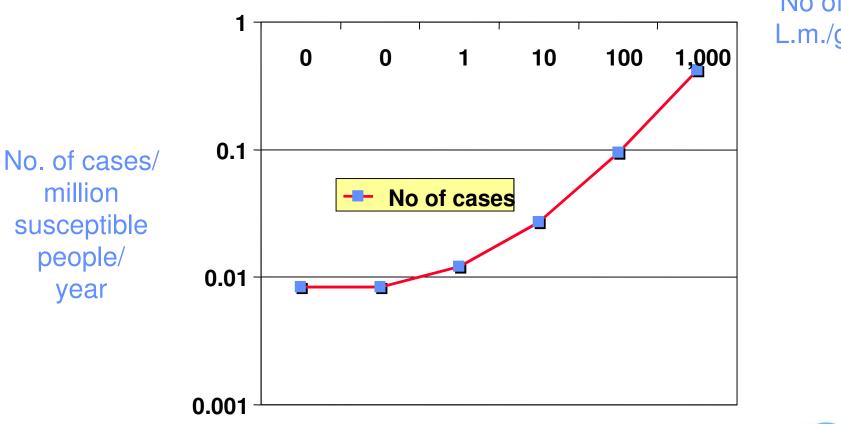
Risk characterization

- The dose-response models and exposure data were used to calculate the probability of contracting listeriosis
- Risks per million servings for healthy and susceptible populations were estimated
- The number of illnesses per 10 million persons per year was also a model output

Risk characterization

Two risk estimates

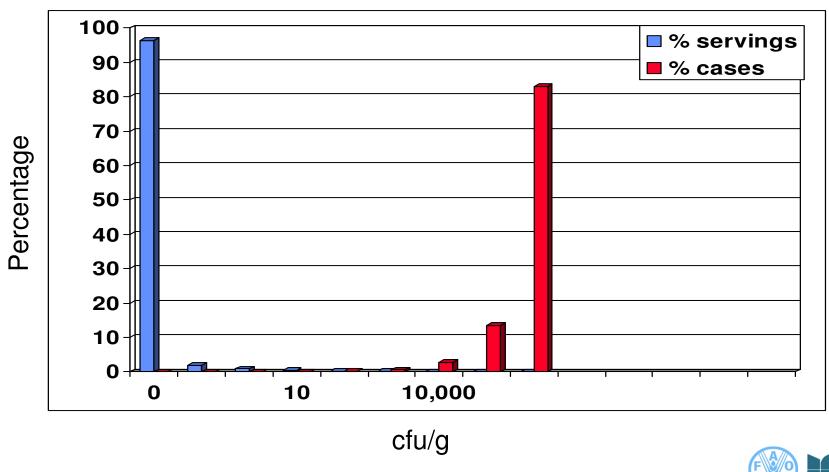
Food	Mean cases of listeriosis per 10 million people per year	Mean cases of listeriosis per million servings
Milk	9.1	0.005
Ice-cream	0.012	0.000014
Fermented meat	0.00055	0.0000021
Smoked fish	1.6	0.053



Response to Question 1

Estimated number of listeriosis cases as a consequence of contamination level*

No of L.m./g


* at point of consumption

Relationship between dose and incidence due to that dose (1)

Influence of microbial limit on incidence in relation to % of "defectives"

% "detective" servings	Predicted no. of listeriosis cases * when:		
	absent in 25 g	< 100/g	
0	0.002	0.02	
0.00001	0.006	0.025	
0.0001	0.04	0.61	
0.001	0.42	0.44	
0.01	4.23	4.25	
0.1	42.3	42.3	
1	419	419	

[&]quot;Defective" servings assumed to contain ≥ 10⁶ L.m./g

^{*} In the USA per Mill population

Response to Question 2

Susceptibility of various populations

Condition	Relative susceptibility	Calculate "r- value"
Transplant	2 584	1.4 x 10 ⁻¹⁰
Aids	865	4.6 x 10 ⁻¹¹
Cancer – pulmonary	229	1.2 x 10 ⁻¹¹
Diabetes	25	1.3 x 10 ⁻¹²
> 65 years old	7.5	4.0 x 10 ⁻¹³
< 65 years old, healthy	1	5.4 x 10 ⁻¹⁴

Response to Question 3

Abbreviated answers

- The potential for growth of L.m. strongly influences the risk of contracting listeriosis
- The extent is dependent on the characteristics of the food and the conditions and duration of refrigerated storage
- The increase in risk may be a factor between 100 and 1 000

Limitations and caveats

No MRA is complete without a listing of the uncertainties, variabilities, assumptions, lack of data etc. that influence the outcomes

In the FAO/WHO report they are summarized in 9 bullet points

Limitations: examples

- Uncertainties and variability in the MRA because:
 - Reality was simplified
 - Quantitative data on L.m. contamination were limited and restricted primarily to European foods
 - Prevalence and number data for L.m. in foods came from many different sources, adding to uncertainty and variability
 - Consumption characteristics came mainly from the USA and Canada
- The dose-response curve used in some of the calculations was one for the susceptible population; thus some risks may be over-estimated.

Key points

- Estimating risk can be very useful for risk managers in their decision-making
- The way in which an MRA is conducted and the outcomes depend largely on the questions that need to be addressed
- Communication between risk managers and assessors is essential for the best use of the resources and the interpretation of the outcomes of the MRA
- The outcomes should be carefully presented, anticipating and preventing misinterpretations

